
International Journal of Scientific & Engineering Research, Volume 8, Issue 1, January-2017 904
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

Improvement in Genetic Algorithm to Increase
Error Detection Rate for Product Line Model

based Testing
1Gurpreet Kaur

1Student Department of CSE, Lovely Professional University, Punjab, India

Abstract: Testing is a used to evaluate the system to discover that it satisfied with given requirements or it does not. Testing used to
execute the system to find out any error, or missing requirements. Model based testing is a black box testing in which models are used
to generate test cases. The online technique of Model based testing is used to generate test cases automatically. Sometimes faults are
occurred in the test cases. In this paper, enhancement in genetic algorithm is done with supervised learning to remove faults from the
test cases.

Keywords: Testing, test cases, Model based testing, Genetic algorithm, Results and comparison.

—————————— ——————————
1. Introduction

Software Engineering [1] is the production of the software

from the system specification. Software Engineering is an
engineering application to design, development and
maintenance of the software. It is a methodical application
of technical knowledge, experience and methods to the
design, implementation, testing and documentation of
software or we can say engineering of the software in terms
of design, implementation, testing and maintenance of the
software.
Software testing [2][3] provides an independent view of
system software which allows business for understanding
risks in implementation of software. It is not a process to
execute an application for finding errors but testing is also
used to find failures in software so that errors are find out
and corrected. Software testing itself is related to two
processes called validation and verification. Verification is
“the process of assessing a system to know that the software
of a given phase of development satisfy the conditions
forcing start phase” and Validation is “the process of
assessing a system during or at the last of the process of
development to determine that system is satisfied with the
given needs or not”.
Section 1.1explain Model Based Testing, 1.2 explain
mutation testing, 1.3 explain software product line, 1.4 give
details about the process of genetic algorithm. Section 2 give
detail of related work, section 3 explain proposed
methodology, section 4 contain experimental results and
comparison and section 5 include conclusion and future
scope.

1.1 Model Based Testing

Test suites are not obtained from source code but it is
obtained from models. MBT is the form of black-box testing.
Models used to representing desire behavior of System
Under Test (SUT) and also represent test environment. MBT
(Model based testing) is mainly used to generate test cases
automatically [4]. Fig. 1.1 shows general Model Based
Testing setting.

Fig. 1.1 Model Based Testing setting
Test case is obtained from model that test case is functional
tests on the same level of hiding as model. An abstract test
suite is on the incorrect level of hiding so it cannot be
directly executed against an SUT. Executable test suites is
necessary to obtained by abstract test suites. Executable test
suites communicate with the System Under Test directly.
This is done by mapping abstract test case to test cases
which is concrete which suits for execution. Inside some
MBT environments, some model can contain sufficient
knowledge for directly generating executable test suites.

IJSER

http://www.ijser.org/
http://en.wikipedia.org/wiki/Black-box_testing
http://en.wikipedia.org/wiki/Executable_test_suite

International Journal of Scientific & Engineering Research, Volume 8, Issue 1, January-2017 905
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

Advantages:-
 You have not necessary for writing new tests for every

new aspect. When you have a model it becomes easy to
re-generate the test cases than the manual test cases.

 Whenever add a new feature, one new action is added
to state machine for running in combination with old
actions. A small change automatically wave by whole
suite of test cases. So, the designing is fluid.

 Design much and less coding.
 Tests continuously used to finding bugs.
1.1.1 MBT Techniques
Model Based Testing performed by two techniques. [5] a)
Online; Model Based Testing tools connect directly to
System Under Test(SUT) and dynamically test it. During
execution test cases are generated dynamically. As test cases
are generated it executes the tests and support long test
runs. b) Offline; Test cases are generated from test models
for later execution on SUT. It can be done by two ways:
offline generation of executable tests which generate test
cases as computer readable assets that can run
automatically, and offline generation of manually
deployable tests which generate test cases as human
readable assets that can later used for manual testing. Test
cases are generated automatically.
1.2 Mutation Testing
Mutation testing is used to detect the number of mutants in
the model. The number of mutants found is known as the
number of kill mutants otherwise live mutants. It calculates
the mutation score. Mutation score is the ratio of number of
kill mutants to the total number of mutants.[6]

 Number of kill Mutants
Mutation score=

 Total Number of mutants
1.3 Software Product line
Software Product Line [7] [8] shares the common set of
features to satisfy the market segment. Software product
line testing tests these common features. The products
which come from the same chain but dressed differently
and they share methods, processes are known as software
product line. According to Barry Boehm’s it is code reuse.
Software product line provides practical guidance for
business case. It produces the new product from the same
development by adding or enhancing little. It makes the
relationship between the code, architecture and production
process. Parts of the software can be reused across the
product line.
1.4 Genetic Algorithm

Genetic algorithm [9][10][11] developed by Goldberg was
inspired by Darwin’s theory of evolution. Genetic algorithm
generates the solution for a problem. The GA is a stochastic
global search method that mimics the metaphor of natural
biological evolution. Genetic algorithm operates on a
population of potential solutions applying the principle of
survival of the fittest to produce (hopefully) better and
better approximations to a solution. At each generation, a
new set of approximations is created by the process of
selecting individuals according to their level of fitness in the
problem domain and breeding them together using
operators borrowed from natural genetics. This process
leads to the evolution of populations of individuals that are
better suited to their environment than the individuals that
they were created from, just as in natural adaptation.
Individuals, or current approximations, are encoded as
strings, chromosomes, composed over some alphabet(s), so
that the genotypes (chromosome values) are uniquely
mapped onto the decision variable (phenotypic) domain.
The most commonly used representation in GAs is the
binary alphabet {0, 1} although other representations can be
used.
The process of genetic algorithm process is:
Step 1: Determine the number of chromosomes, generation,
and mutation rate and crossover rate value
Step 2: Generate chromosome
Step 3: Process steps 4-7 until the number of generations is
met
Step 4: Evaluation of fitness value of chromosomes by
calculating objective function
Step 5: Chromosomes selection
Step 6: Crossover:- produce new chromosomes.
Step 7: Mutation
Step 8: New Chromosomes (Offspring)
Step 9: Solution (Best Chromosomes).

2. 2. Related Work
Software Product Line techniques and tools allow the
engineering of the software by reusing the software assets
in a systematic way. For representing software product line,
feature models (FM) [12] were introduced which abstractly
modeled the common feature of the software assets. In
common SPL, there are thousands of features which lead to
the complex Feature Model. For instance, Linux Kernel FM
has more than 6000 features [13]. Testing of SPL and
Feature Model is difficult activity. A technique mutation
analysis is used to evaluate the quality of the testing
process. FM provides information to establish a mutation
approach. It focuses on evaluating other testing process.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 8, Issue 1, January-2017 906
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

Test suits [14] [15] represent a set of software products and
mutants can be considered as a fault. In Model Based
Testing, it has been found that dissimilar test suits have
higher fault detection than similar test suits. Removal of
similar products reduces the size of the test suits by using
similarity heuristics. To evaluate the degree of given test
suits, use similarity heuristics to compare two products. An
experiment conducted on both similar and dissimilar test
suits towards feature model of different size which signify
the higher ability of dissimilar test suits to detect the defect
arise in the modified feature models. It evaluates the
validity of similarity driven prioritization technique.
Testing a Software Product line is challenging due to
combinatorial explosion of the number of products to
consider. Testing of all products is feasible because the
resources are limited. Reduction of number of products
becomes necessary to test a reasonable value while trying to
maximize the confidence in the products that are tested.
Feature Model (FM) is used to test Software Product Line
(SPL). Use mutation testing as a way to assess the similarity
method. Feature Model represents the features of product
line and the features represent the abstraction of software
assets like functionality. Feature Model allows construction
of software product by selecting features to be presented in
the final product. Feature Model represent by Feature
Diagram (FD). In Feature Diagram first make the hierarchy
of features by graphical representation and then translate
into prepositional logic.
In previous work, Feature Diagram of Mobile Phone with
10 features is taken to describe Product Line Testing. A
product is said to be valid if it satisfy the Boolean formula
of FM and invalid, if the products does not satisfy the
formula of Feature Model. Formula of FM has clauses and
literals. A clause is a constraint that has to be satisfied by
given product and literal represent either a selected or
unselected features. First make the hierarchy of features
then change the hierarchy into clausal normal form (CNF).
Mutation analysis approach evaluates the power of test
cases to indicate behavior differences between the unaltered
and altered artifact versions. The process of introducing
mutants is called mutant analysis. While testing, if mutants
can be detected then these mutants called killed otherwise
live. The Mutation score is measured by the ratio of killed
mutants by total introduced mutants. Distance metric is
used in the base paper to evaluate the degree of similarity
between any two products. Some formulas of feature
model, clauses and literals are used to evaluate that the

dissimilar test suits have higher mutant detection power
than the similar ones.
Problem:-
 The testing process will be improved since the

generated tests will be capable of finding all the
introduced mutants.

3. Proposed Methodology
The model based testing is the technique to test the software
through the model. The model has various test cases which
are generated with the reverse engineering process. The
product line testing has various communalities through
which various end products are produced. Due to large size
and associated communalities in the product line, it is very
difficult to generate accurate test cases with the model-
mutation based testing technique. In this work,
improvement will be proposed in model-mutation based
testing technique to reduce error in test cases generation. As
described, model-mutation based technique take mutation
values randomly and generate test case with best fitness
function. Due to random selection of mutation values, error
is raised at the time of test case generation. The proposed
enhancement will be based on to select best mutation value
for generation of test case. To select best value, technique of
unsupervised learning will be applied which select value on
the basis of type of software for which test cases are going
to generate.
Figure 3.1 shows that there are five features of online
shopping website are taken to generate test cases of these
and detect error from these. We apply improved genetic
algorithm to increase the error detection rate. The model
based testing generates five test cases according to the five
features of online shopping website.

4. Experimental Results

Below table shows the experimental results of improved
genetic algorithm. The number of errors detected in each

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 8, Issue 1, January-2017 907
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

test case according to the selection of feature is shown in table and also the error detection rate in test cases

Features Selected Generate Test cases % of Faults Error Detection

Rate

 Click the URL link for online

purchase.

One (1) 15.9110% 7.2689%

 Click the URL link for online

purchase.

 Click the item field and Select the

item.

Two (1 and 2)

15.9110%

16.7360%

14.9141%

 Click the URL link for online

purchase.

 Click the item field and Select the

item.

 Enter the Account holder Name

Three (1, 2 and 3)

15.9110%

16.7360%

19.9890%

24.078%

 Click the URL link for online

purchase.

 Click the item field and Select the

item.

 Enter the Account holder Name.

 Click the Payment mode.

Four (1, 2, 3 and 4)

15.9110%

16.7360%

19.9890%

11.6310%

29.3591%

 Click the URL link for online

purchase.

 Click the item field and Select the

item.

 Enter the Account holder Name.

 Click the Payment mode.

 Enter the Shipping Address

Five (1, 2, 3, 4 and 5)

15.9110%

16.7360%

19.9890%

11.6310%

22.8560%

39.8004%

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 8, Issue 1, January-2017 908
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

5. Comparison with Existing Technique

Figure 4.1: Comparison

As shown in figure 4.1, the bar graph shows the comparison
of genetic and improved genetic algorithm. After selecting
first feature first test case is generated automatically and
Error detection rate of improved algorithm is greater than
enhanced algorithm.

Figure 4.2: Comparison

As shown in figure 4.2 the bar graph shows the comparison
of genetic and improved genetic algorithm. After selecting
two features two test cases are generated automatically and
Error detection rate of improved algorithm is greater than
enhanced algorithm.

Figure 4.3: Comparison

As shown in figure 4.3, the bar graph shows the comparison
of genetic and improved genetic algorithm. After selecting
three features three test cases are generated automatically
and Error detection rate of improved algorithm is greater
than enhanced algorithm.

Figure 4.4: Comparison

As shown in figure 4.4, the bar graph shows the comparison
of genetic and improved genetic algorithm. After selecting
four features four test cases are generated automatically and

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 8, Issue 1, January-2017 909
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

Error detection rate of improved algorithm is greater than
enhanced algorithm.

Figure 4.5: Comparison

As shown in figure 4.5, the bar graph shows the comparison
of genetic and improved genetic algorithm. After selecting
five features five test cases are generated automatically and
Error detection rate of improved algorithm is greater than
enhanced algorithm.

6. Conclusion and Future Scope
Models used to representing desire behavior of System
under Test (SUT) and also represent test environment. MBT
is mainly used to generate test cases automatically. Model
based testing is basically used to describe the behavior of
system under test. They focus upon model based testing
and the simple process of how model based testing
describes the fundamental behavior of system under test.
Model based testing is very popular because it supports
automated test case generation. In the existing techniques
faults occurs in the generated test cases. In proposed
technique, enhancement in Genetic algorithm has been
done using unsupervised learning of neural technique to
get better results of testing and increase error detection rate.
In future, we can get better results by using back
propagation algorithm and we can also enhance this
algorithm by detecting more faults.

REFERENCES
 [1] Yanchun Sun, “The Challenge and Practice of Creating
Software Engineering Curriculum”, School of Electronics
Engineering & Computer Science, Peking University, pp
497-501, IEEE 2011.
[2] Gaurav, Kestina Rai “Software Testing Techniques for Test
Case Generation” International journal of Advanced
Research in Computer Science and Software Engineering
2013 pp 261-265.
[3] S. Beydeda and V. Gruhn, “An integrated testing technique
for component-based software,” ACS/IEEE International
Conference on Computer Systems and Applications, June
2001, pp 328 – 334.
[4] Ibrahim K. El-Far and James A. Whittaker, ”Model-based
Software Testing”, Florida Institute of Technology pp.1-22,
2001.
[5] OlliPekkaPuolitaival,” Model Based Testing Tools”, VTT
Business from Technology.
[6] S. C. P. F. Fabbri, J. C. Maldonado, P. C. Masiero, M. E.
Delamaro, and E. Wong, “Mutation testing applied to validate
specifications based on petri nets,” in Proceedings of the IFIP
TC6 Eighth International Conference on Formal Description
Techniques VIII. London, UK, UK: Chapman & Hall, Ltd.,
1996, pp. 329–337.
[7] K. Pohl, G. B¨ockle, and F. J. van der Linden, “Software
Product Line Engineering: Foundations, Principles and
Techniques”, Secaucus, NJ, USA: Springer-Verlag New York,
Inc., 2005.
[8] P. Clements and L. Northrop, “Software Product Lines:
Practices and Patterns”, Addison Wesley, Reading, MA, USA,
2001.
[9] Denny Hermawanto ,” Genetic Algorithm for Solving
Simple Mathematical Equality Problem”, Indonesian Institute
of Sciences (LIPI), Indonesia, pp 1-10, 1997.
[10] V.Mary Sumalatha,” An Model Based Test Case
Generation Technique Using Genetic Algorithms”, Gitam
University, Visakhapatnam, Andhra Pradesh, India, pp 46-
57,TIJCSE 2012.
[11] F. ipate, R. lefticaru,” Genetic Model based Testing:a
Framework and a Case Study”, Department of Computer
Science and Mathematics , University of Pite»sti, Romania,
pp 209-227, 2008.
[12] K. Kang, S. Cohen, J. Hess, W. Novak, and S. Peterson,
“Feature-Oriented Domain Analysis (FODA) Feasibility
Study,” Carnegie-Mellon University Software Engineering
Institute, Tech. Rep., Nov. 1990.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 8, Issue 1, January-2017 910
ISSN 2229-5518

IJSER © 2017
http://www.ijser.org

[13] T. Berger, S. She, R. Lotufo, A. Wasowski, and K.
Czarnecki, “Variability modeling in the real: a perspective from
the operating systems domain” in ASE, 2010, pp. 73–82.
[14] R. A. DeMillo and A. J. Offutt, “Constraint-based
automatic test data generation” IEEE Trans. Softw. Eng., vol.
17, no. 9, pp. 900–910, Sep. 1991.

[15] M. Papadakis and N. Malevris, “ Mutation based test case
generation via a path selection strategy” Inf. Softw. Technol.,
vol. 54, no. 9, pp. 915–932, Sep. 2012

IJSER

http://www.ijser.org/

	Introduction
	Advantages:-

	References

